
Parallelizing Quicksort

• Lets start with recursive decomposition - the list is

partitioned serially and each of the subproblems is

handled by a different processor.

• The time for this algorithm is lower-bounded by Ω(n)!

• Can we parallelize the partitioning step - in particular, if

we can use n processors to partition a list of length n

around a pivot in O(1) time, we have a winner.

• This is difficult to do on real machines, though.

Parallelizing Quicksort: PRAM Formulation

• We assume a CRCW (concurrent read, concurrent write) PRAM with

concurrent writes resulting in an arbitrary write succeeding.

• The formulation works by creating pools of processors. Every

processor is assigned to the same pool initially and has one

element.

• Each processor attempts to write its element to a common location

(for the pool).

• Each processor tries to read back the location. If the value read

back is greater than the processor's value, it assigns itself to the

`left' pool, else, it assigns itself to the `right' pool.

• Each pool performs this operation recursively.

• Note that the algorithm generates a tree of pivots. The depth of the

tree is the expected parallel runtime. The average value is O(log n).

Parallelizing Quicksort: PRAM Formulation

A binary tree generated by the execution of the quicksort

algorithm. Each level of the tree represents a different

array-partitioning iteration. If pivot selection is optimal,

then the height of the tree is Θ(log n), which is also the

number of iterations.

Parallelizing Quicksort: PRAM Formulation

The execution of the PRAM algorithm on the array shown in (a).

Parallelizing Quicksort: Shared Address Space

Formulation

• Consider a list of size n equally divided across p
processors.

• A pivot is selected by one of the processors and made
known to all processors.

• Each processor partitions its list into two, say Li and Ui,
based on the selected pivot.

• All of the Li lists are merged and all of the Ui lists are
merged separately.

• The set of processors is partitioned into two (in
proportion of the size of lists L and U). The process is
recursively applied to each of the lists.

Shared Address Space Formulation

Parallelizing Quicksort: Shared Address Space

Formulation

• The only thing we have not described is the global

reorganization (merging) of local lists to form L and U.

• The problem is one of determining the right location for

each element in the merged list.

• Each processor computes the number of elements

locally less than and greater than pivot.

• It computes two sum-scans to determine the starting

location for its elements in the merged L and U lists.

• Once it knows the starting locations, it can write its

elements safely.

Parallelizing Quicksort: Shared Address Space

Formulation

Efficient global rearrangement of the array.

Parallelizing Quicksort: Shared Address Space

Formulation

• The parallel time depends on the split and merge time, and the

quality of the pivot.

• The latter is an issue independent of parallelism, so we focus on the

first aspect, assuming ideal pivot selection.

• The algorithm executes in four steps: (i) determine and broadcast

the pivot; (ii) locally rearrange the array assigned to each process;

(iii) determine the locations in the globally rearranged array that the

local elements will go to; and (iv) perform the global rearrangement.

• The first step takes time Θ(log p), the second, Θ(n/p) , the third,

Θ(log p) , and the fourth, Θ(n/p).

• The overall complexity of splitting an n-element array is Θ(n/p) +
Θ(log p).

Parallelizing Quicksort: Shared Address Space

Formulation

• The process recurses until there are p lists, at which

point, the lists are sorted locally.

• Therefore, the total parallel time is:

• The corresponding isoefficiency is Θ(plog2p) due to

broadcast and scan operations.

Parallelizing Quicksort: Message Passing Formulation

• A simple message passing formulation is based on the recursive

halving of the machine.

• Assume that each processor in the lower half of a p processor

ensemble is paired with a corresponding processor in the upper

half.

• A designated processor selects and broadcasts the pivot.

• Each processor splits its local list into two lists, one less (Li), and

other greater (Ui) than the pivot.

• A processor in the low half of the machine sends its list Ui to the

paired processor in the other half. The paired processor sends its

list Li.

• It is easy to see that after this step, all elements less than the

pivot are in the low half of the machine and all elements greater

than the pivot are in the high half.

Parallelizing Quicksort: Message Passing Formulation

• The above process is recursed until each processor has

its own local list, which is sorted locally.

• The time for a single reorganization is Θ(log p) for

broadcasting the pivot element, Θ(n/p) for splitting the

locally assigned portion of the array, Θ(n/p) for exchange

and local reorganization.

• We note that this time is identical to that of the

corresponding shared address space formulation.

• It is important to remember that the reorganization of

elements is a bandwidth sensitive operation.

Assignment

Q.1)What is parallelizing Quicksort?

Q.2)How message passing formulation is possible in

parallellizing quicksort?

